Empirical Comparison of Incremental Learning Strategies for Genetic Programming-Based Keep-Away Soccer Agents

نویسندگان

  • William H. Hsu
  • Scott J. Harmon
  • Edwin Rodríguez
  • Christopher A. Zhong
چکیده

We consider the problem of incremental transfer of behaviors in a multi-agent learning test bed (keep-away soccer) consisting of homogeneous agents (keepers). One method for this incremental transfer is called the easy missions approach, and seeks to synthesize solutions for complex tasks from those for simpler ones. In genetic programming (GP), this has been achieved by identifying goals and fitness functions for subproblems of the overall problem. Solutions evolved for these subproblems are then reused to speed up learning, either as automatically defined functions (ADFs) or by seeding a new GP population. Previous positive results using both approaches for learning in multi-agent systems (MAS) showed that incremental reuse using easy missions achieves comparable or better overall fitness than monolithic simple GP. A key unresolved issue dealt with hybrid reuse using ADF plus easy missions. Results in the keep-away soccer domain (a test bed for MAS learning) were also inconclusive on whether compactness-inducing reuse helped or hurt overall agent performance. In this paper, we compare monolithic (simple GP and GP with ADFs) and easy missions reuse to two types of GP learning systems with incremental reuse: GP/ADF hybrids with easy missions and single-mission incremental ADFs. As hypothesized, pure easy missions reuse achieves results competitive with the best hybrid approaches in this domain. We interpret this finding and suggest a theoretical approach to characterizing incremental reuse and code growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Comparison of Incremental Reuse Strategies in Genetic Programming for Keep-Away Soccer

Easy missions approaches to machine learning seek to synthesize solutions for complex tasks from those for simpler ones. In genetic programming, this has been achieved by identifying goals and fitness functions for subproblems of the overall problem. Solutions evolved for these subproblems are then reused to speed up learning, either as automatically defined functions (ADFs) or by seeding a new...

متن کامل

Genetic Programming And Multi-agent Layered Learning By Reinforcements

We present an adaptation of the standard genetic program (GP) to hierarchically decomposable, multi-agent learning problems. To break down a problem that requires cooperation of multiple agents, we use the team objective function to derive a simpler, intermediate objective function for pairs of cooperating agents. We apply GP to optimize first for the intermediate, then for the team objective f...

متن کامل

Genetic Programming for Layered Learning of Multi-agent Tasks

We present an adaptation of the standard genetic program (GP) t o hierarchically decomposable, multi-agent learning problems. To break down a problem that requires cooperation of multiple agents, we use the team objective function to derive a simpler, intermediate objective function for pairs of cooperating agents. W e apply GP to optimize first for the intermediate, then for the team objective...

متن کامل

Genetic Programming for Strategy Learning in Soccer Playing Agents: A KDD-Based Architecture

A KDD -based architectu re should serve as a good framework to learn an improved strategy of ball control for intelligent soccer playing agents. Current work on using genetic algorithms to improve large scale data mining has been successful and provides an architecture for implementing future systems. This architecture is well suited for genetic programming and it is proposed that it can be ext...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004